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Amplitude mode formalism for conjugated polymers 
and collective coordinate method for non-linear 
excitations 

Y Wada-t 
Physikalischcs Institut, Universitat Bayreuth, D-8580 Bayreuth, Federal Republic of 
Germany 

Received 27 October 1988 

Abstract. The collective coordinate method is introduced to the amplitude mode formalism 
for trans-polyacetylene in order to describe the motions of non-linear excitations, such as a 
soliton or  a polaron. Using the explicit normal-mode solutions of lattice vibrations around 
the excitations, we define the Lagrangian coordinates of the excitations and the normal 
modes. The Hamiltonian is rewritten in terms of these coordinates and conjugate momenta. 
The result is a straightforward generalisation of single-component non-linear models. 

1. Introduction 

Ever since it was found that some non-linear models have stable and localised particular 
solutions, extensive studies were carried out to find what meanings these solutions have 
and how they can be used in quantum theory. In the arguments, it was realised that 
an excitation always arises without any additional energy. It is associated with the 
breakdown of the translational invariance due to the localised solution and is called 
the Goldstone mode. The Goldstone mode is sometimes cumbersome, particularly in 
statistical mechanics. To overcome this, the collective coordinate method was intro- 
duced (Gervais and Sakita 1975; Tomboulis 1975; Gervais and Jevicki 1976). Instead of 
the Goldstone mode, the coordinate of the non-linear excitation is defined. Since it 
increases the total degrees of freedom, there should be a constraint. This is met by the 
requirement that the fluctuation around the excitation is orthogonal to the Goldstone 
mode. This requirement, in turn, determines the collective coordinate. The collective 
coordinate method works particularly well when the excitation moves slowly. When it 
moves quickly, we have to take account of other effects, such as Lorentz contraction 
and so on, which make discussions less perspicuous. It was remarkable that Tomboulis 
showed that these new variables are obtainable by means of a canonical transformation 
from the original field variables (Tomboulis 1975, Tomboulis and Woo 1976). This was 
of great help in establishing the statistical mechanics. 
t Permanent address: Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan. 
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The collective coordinate method was first developed for the simple mathematical 
models such as sine-Gordon and q 4  models. On the other hand, we now have several 
materials which would have non-linear excitations as solitons, polarons, and breathers. 
Each of them corresponds to the stable and localised particular solution. Trans-poly- 
acetylene is the material most likely to have such excitations today. It has more com- 
plicated structures than the simple mathematical models. It is composed of both electrons 
and lattice. The lattice is dimerised, since it is predominantly one dimensional. The 
dimerisation has two patterns which give doubly degenerate ground states. When the 
two patterns arise at the same time, the boundary between the two gives the soliton. In 
addition, we can have the polaron which modulates the pattern locally. A simple but 
quite effective model was proposed by Su, Schrieffer and Heeger (SSH), in which 
the electrons interact with one type of lattice vibrations (Su et al 1979, 1980). It was 
immediately pointed out by Takayama et a1 (1980) that the SSH model could be reduced 
to a continuum model, since the soliton extends over a region of many lattice constants. 
This continuum (TLM) model has made an analytical approach more feasible. Since then, 
the physics of polyacetylene has been extensively studied experimentally as well as 
theoretically. 

Optical studies have given one of the most interesting results. Particularly, the 
infrared absorption and the Raman scattering have shown that polyacetylene has more 
complicated lattice vibrations than the SSH model. Horovitz (1982) pointed out that we 
can understand the experimental facts with the help of the SSH model, if three types of 
lattice vibrations are taken into account, instead of only one. His theory is called 
‘amplitude mode formalism’. Mele and Hicks (1985) later showed that the amplitude 
mode formalism can be incorporated into the TLM model, if the latter is slightly gen- 
eralised. The generalisation is indispensable in quantitative discussions of relevant 
properties of polyacetylene. 

It has been realised that the collective coordinate method is straightforwardly appli- 
cable to the TLM model (Ogata et al1986,1987, Kunz 1986). The application needs no 
change from the simple mathematical models, if we can use an adiabatic approximation 
for the electrons. The electrons instantaneously follow the motions of the lattice. This 
is the case in polyacetylene, since the electronic energy gap is much larger than 
the phonon frequencies. With the help of the collective coordinate method, soliton- 
phonon interactions have been studied, as have the possible diffusive motions of the 
soliton. 

It is, therefore, desirable to write the amplitude mode formalism in terms of the 
language of the collective coordinate method. This is the purpose of the present paper. 
Since we know the complete sets of eigenfunctions for the lattice vibrations either around 
the soliton or the polaron, we make use of them. The constraint, that compensates for 
the increased degree of freedom, is easily satisfied. The discussions, then, follow the most 
elementary way of introducing Lagrangian coordinates. The commutation relations and 
the Hamiltonian are given in forms free from the eigenfunctions of the lattice vibrations. 
The results turn out to be the straightforward generalisation of the single-component 
TLM model. 

We review the amplitude mode formalism in 0 2, in the terminology of Me16 and 
Hicks (1985). In Q 3, the collective coordinate is introduced as one of the Lagrangian 
coordinates. The conjugate momenta are defined. The Hamiltonian is written in terms 
of them. In 8 4, the discussions are summarised and possible applications are pointed 
out. 
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2. Amplitude mode formalism 

The single-component TLM model has the Hamiltonian (Takayama et a1 1980) 

where uF is the Fermi velocity, A the electron-phonon coupling constant, A(x) is the 
order parameter which represents the degree of dimerisation, oQ the bare optical 
phonon frequency. The electron fields, 111: and qs, are in the form of spinors, the first 
and second components being associated with the right-and left-going waves, respect- 
ively. The suffix s indicates the spin. The quantities 0, and o1 are the Pauli matrices. 
Here, we have a single field A(x) for the optical phonons. 

In order to have the amplitude mode formalism, Mele and Hicks (1985) generalised 
HTLM into 

where the three types of phonon fields A&) are taken into account, A, being the 
coupling constant of the mth phonon with the bare frequency U,, and A(x) is defined by 

It is well known that the TLM model, (2.1), has a static soliton solution 

A,(x> = A0 tanh(x/Eo) (2.4) 

ALY(4 = (ALY/A)ASW (2.5) 

with Eo = uF/A0. Then, the Hamiltonian (2.2) gives a static solution 

where 

3 

A = 1c. A@. 
LY= 1 

In the TLM model phonons around the soliton are introduced as small deviations from 
the static solution 

~ A ( X )  = A(x) - A,(x). (2.7) 

Linearisations of equations of motion with respect to dA(x) and small deviations of 
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electronic wavefunctions give an eigenvalue equation which determines phonon normal 
modes. It takes the form (It0 et a1 1984, Terai et a1 1985, Hicks and Blaisdelll985) 

where Qf is the eigenvalue and K(x, y) is defined in terms of electronic wavefunctions 
V$’)(x) with eigenvalues E, in the TLM model. It is given by 

where the prime and double prime indicate summations over the occupied and unoc- 
cupied states, respectively. The eigenvalue problem (2.8) is solved numerically. We 
have detailed knowledge of SZi and g i ( x )  (Ono et a1 1986, Terai and Ono 1986, Sun et a1 
1985, Chao and Wang 1985). 

For convenience later on, we change the notation, introducing 

A, (x )  = ( V h  a 1’2 (0 o/a a )A a (XI (2.10) 

where 

0; = 2Aw& 

The Hamiltonian (2.2) becomes 
3 

H =  2 (2nuFAwg)-’ dx(A?,(x) + Wt&(X)) 
lY= 1 i 

A 112 

A(x) = ( f )  (%)A@(x). 0 0  

3 

lY= 1 

(2.11) 

(2.12) 

(2.13) 

3. Collective coordinate method 

The Hamiltonian (2.12) can be obtained, if a corresponding Lagrangian is given. It is 
written 

L = - dx[A;(x) - wiA:(x)] 
a = l  “I 2 
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where the first term is due to the slowly moving soliton. It is at location Q,(t) at time t. 
The second term X, is any deviation from the soliton. The variable Q,(t) is the soliton 
coordinate. It is called the collective coordinate. 

Since we have increased the degrees of freedom by introducing Q,(t), the function 
x f f  has to satisfy a constraint. The constraint is the requirement that X, does not involve 
the Goldstone mode. The Goldstone mode is a phonon normal mode with zero fre- 
quency. Since the translational invariance is broken by the soliton, there is such a zero- 
frequency mode. Excitation of the Goldstone mode leads to a translation of the soliton, 
which needs no extra energy. In the collective coordinate method, however, the soliton 
translation is given by the change in Q,(t). Thus, the Goldstone mode should not be 
included in x,. We shall show that the constraint is given by 

Phonon normal modes are studied in the amplitude mode formalism with the help 
of (2.8) and (2.9) (Terai eta1 1986b, Hicks and Mele 1986). The two parameters 06 and 
A are replaced by 02, and A,, and there is a summation over a on the right hand side of 
(2.8). We immediately obtain an equation forX,(x, t )  - e-iW‘X,(x, U )  

(02, - W2)X,(X, U) = E [(&Ja01’2/21W,% J dY K(x ,Y)Xd(Y,  U). (3.4) 
LY’ 

Here, the soliton is assumed to be static and at Q,(t) = 0. The eigenvalue w 2  depends 
on two indices i and j ,  i being an index classifying x-dependence and j classifying a- 
dependence. If we write the eigenfunction with the eigenvalue m2 = mf as q J x ,  m,,), it 
is given by 

where c,( ml,) is defined by 
Q)&> 01,) = C , ( W I , > S l ( 4  

Substitution of (3.5) into (3.4) gives 

For each a!,  equation (3.7) gives u ; ~ ,  ofl, and wT2. With the help of (3.4), we obtain 

(3.8) 

where Q): is the complex conjugate of q,. Since the functions g,(x) form a complete 
orthonormal set, the orthonormalisation condition is given by 

T /d. Q):k ~I,)%(X, W k l )  = dlkd,, .  (3.9) 

It is known that equation (2.8) has a normal mode with zero frequency no = 0. Equation 
(3.7), then, gives an eigenvalue which vanishes 

00, = 0. (3.10) 
The corresponding eigenfunction is given, with the help of (3.5), 

pl,(x, 000) = (Ay2/o,)cgo(x) = ( ~ A ; / 2 ~ 6 ’ 2 c / 2 w , A o ) a A , ( x ) / a x  (3.11) 
where c = (2:’a=lA,/mt)-1/2. Equations (3.9) and (3.11) show that equation (3.3) is the 
constraint that has to satisfy. 
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The constraint is easily satisfied, if we make use of the phonon eigenmodes (3.5). 
The function x, is written 

where the prime indicates that the sum does not include the term with i = j = 0. The 
variables Qo(t) and Qji(t) are the Lagrangian coordinates. 

Substitution into (3.1) gives 

The electron fields also depend on the collective coordinate as vs (x  - Q,(t), t) .  
Conjugate momenta are found to be 

where we have introduced 

‘ I 2  coo ah, ax, 
g = m c / d x ( + )  --- 

e 0, ax ax 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

Here, we have made use of the notation that the phonon normal mode g j ( x )  means the 
mode with the opposite wavenumber to gj(x) and it is the complex conjugate of gj(x). 
For the localised modes, gi = g j .  The quantity is still a dynamic quantity. 
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We define the ne field by 

n c Y ( x 7  '1 = 2' p-lJ(t)qcY(x> O Z J > '  
11 

Eliminating Q, in (3.14) with the help of (3.15), we obtain 

1mn 

Substitution into (3.20) gives 

Since equation (3.17) is rewritten 

equation (3.23) finally becomes 

Equation (3.15) is also rewritten 

The Hamiltonian is given by 

which turns out to be 

5343 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 
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where a relation 

(3.29) 

is used. The electronic states are represented by the TLM eigenfunctions. We can intro- 
duce the particle-hole representation. Electron creation operators above the Fermi 
level are particle creation operators, whereas electron creation operators below the 
Fermi level are hole annihilation operators. For a product of operators, the normal 
product is obtained when all the creation operators are transferred to the left-hand side 
of all the annihilation operators. The sign has to change, if the total transferences are 
performed by an odd number of transpositions of neighboring operators. The normal 
product is represented by colons. It is readily seen that 

7 dx q:(-iuFa3ax + alAs)qs 

= :? I dx q:(- i u F a 3 d ,  + alAs)qs:  + 2’ E ,  (3.30) 
ns 

and 

Icl:(x>alvs(x> = :v:(Xblqs(x): + Ef ~ I p ’ + ( x ) ~ 1 ~ ~ o ) ( 4 .  (3.31) 
n 

With the help of the self-consistency equation in the TLM model 

(3.32) 

where 

E k  = 2’ E ,  + (mui/2) 1 dx A:. (3.34) 
ns 

It is important to point out that n, and X, do not satisfy the usual commutation 
relations, when they are quantum operators. Since the P and Q satisfy 

we get, with the help of (3.12) and (3.19) 
[ P O ,  Q o ]  = - i, [Pij, Q k i ]  = - ifiikfijl 

[ J G ~ ( x , ~ ) , x ~ ( Y , ~ ) I  = - i E ’ q ; ( x ,  w i j > q p ( ~ , ~ i j >  

(3.35) 

ij 

(3.36) 
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4. Discussion 

We have shown that the elementary application of the Lagrange method makes it 
possible to introduce the collective coordinate method into the amplitude mode for- 
malism for trans-polyacetylene in which many types of lattice vibrations are taking part. 
We have extensively used the phonon eigenfunctions around the soliton. The final 
form for the Hamiltonian, however, does not involve them. It is a straightforward 
generalisation of the Hamiltonians which have been derived in the collective coordinate 
method for the single-component non-linear models and also for the TLM model. 

Several authors have used the collective coordinate method for the TLM and SSH 
models. Their main purpose has been to study the interactions between the soliton and 
phonons, and to see how the motion of the soliton is modulated by the interactions. 
Sometimes, the method has unfortunately been misused. It is very important to realise 
that the collective coordinate Q ,  is a cyclic coordinate, if we do not take account of small 
soliton pinning effect by the discrete lattice of the SSH model. Its conjugate momentum 
Po is thus a constant of motion. These facts make it possible to disregard the Goldstone 
mode with zero frequency. In discussions of the soliton dynamics, however, it is some- 
times tempting to think of a ‘force’ acting on the soliton. The easiest way to do so is to 
introduce some effective potential which depends on Q,. This is clearly erroneous. The 
legitimate method is to derive the equation of motion for e,, with the help of the 
Hamiltonian (3.33) and the relevant commutation relations. We have been studying the 
diffusive motion of the solitons in the G4- and TLM models in this way (Ogata and Wada 
1985,1986, Ogata er a1 1986,1987). 

The second misuse concerns the phonon eigenfunctions. Since it is demanding to 
use the exact eigenfunctions, they are very often substituted by plane waves. This 
presumably comes from the conception that, in discussing the soliton-phonon inter- 
action with the help of perturbation theory, we could use unperturbed phonon functions 
which would be the plane waves. This is, however, a misconception. The soliton and 
phonons have the same origin: the lattice distortion. When the distortion is large, it gives 
rise to solitons; when it is small, to phonons. They are two parts of the lattice distortion. 
Interactions between the two parts may be weak, but the structure of one part is 
drastically modified by the emergence of the other. The modification cannot be taken 
into account by perturbation theory. It is necessary to use the knowledge of the structure 
of solitons, which cannot be obtained by a perturbation method. In addition, the weak 
interactions take place at the very region where the modification is most dominant. It is 
the region close to the soliton. It is, thus, clear that we have to use the correct phonon 
eigenfunctions to study the soliton-phonon interaction. Some examples of such discus- 
sions can be found in our previous works (Ogata and Wada 1985,1986, Ogata er a1 1986, 
1987, Terai et a1 1986a). 

The Hamiltonian (3.33) makes it possible to study the soliton dynamics in the 
amplitude mode formalism. Furthermore, we can use it to investigate the effect of 
soliton-phonon interactions on the structure of the soliton itself. Results of such a study 
will be reported separately. 
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